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Decision Analysis in Forensic Science

ABSTRACT: Forensic scientists are routinely faced with the problems of making decisions under circumstances of uncertainty (i.e., to perform
or not perform a test). A decision making model in forensic science is proposed, illustrated with an example from the field of forensic genetics.
The approach incorporates available evidence and associated uncertainties with the assessment of utilities (or desirability of the consequences). The
paper examines a general example for which identification will be made of the decision maker, the possible actions, the uncertain states of nature,
the possible source of evidence and the kind of utility assessments required. It is argued that a formal approach can help to clarify the decision
process and give a coherent means of combining elements to reach a decision.
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An evaluation process starts when the scientist first meets the
case. It is at this stage that the scientist thinks about the questions
that are to be addressed and the outcomes that may be expected.
The scientist should attempt to frame propositions of interest and
think about the weight of evidence that is expected (1). There is a
wide tendency to consider evaluation of evidence as a final step of a
casework examination, notably at the time of preparing the formal
report. This is so even if an earlier interest in the process would
enable the scientist to make better decisions about the allocation
of resources. A first approach to decision-making in an operational
forensic science problem has been proposed by Cook et al. (2). It
is based on a model embodying the principle of likelihood ratio as
a measure of the weight of evidence. In that spirit, (2) proposed a
model for enhancing the cost-effectiveness of a casework activity
from initial contact with the customer. The aim is to enable the
customer to make better decisions.

In routine work, an estimate of the expected likelihood ratio is
often requested by forensic genetics laboratories, before the perfor-
mance of any blood tests. Such an estimate will help the scientist
to support a better decision for the customer.

Imagine a situation in paternity testing where the alleged father
is unavailable but a cousin of the alleged father could potentially
be considered and tested. In such a case the two propositions of
interest may be of the form of:

Hp: The tested person is a cousin of the true father,
Hd : The tested person is unrelated to the child.

Two questions are of interest: (1) can we obtain a value support-
ing the hypothesis Hp or Hd in this scenario?, and (2) how can the
laboratory or the customer take a rational decision on the neces-
sity to perform blood tests after an estimate of possible values of
likelihood ratio?

The first question refers to the pre-assessment process, the
second to decision making. Cook et al. (2) proposed answers to
the first question.
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In the early 1950’s, a debate was initiated as to how people
should make decisions involving money that were in some sense
rational, and as to how people in fact made monetary decisions,
and whether these could be regarded as rational (3). This debate—
through the use of the notion of utility function—was extended
in the context of financial decision-making. This paper proposes
these ideas in a forensic context involving scientific evidence. In
forensic science, decision theory can be used to develop general
approaches to determining optimal choices given a certain body of
evidence and values. The aims of this paper are the development
of earlier works on pre-assessment and the provision of an answer
to the second question using decision theory. The perspective will
be that of an individual decision-maker, who is either the customer
or acts on behalf of the customer (i.e., the forensic scientist) and is
interested in the determination of an optimal course of action using
formal modeling.

Graphical models are also introduced briefly to deal with the
decision problem of interest. They are intended to support human
reasoning and decision making through the formalization of expert
knowledge (4).

Pre-assessment

A scientist requires an adequate appreciation of the circum-
stances of the case so that a framework may be set up for con-
sideration of the kind of examination that may be carried out and
what may be expected from them, in order for a logical procedure
to be performed (2).

The choice of level (e.g., activity level rather than source level;
see (5) for a discussion of levels) for the propositions, Hp and Hd ,
for the evaluation of scientific evidence is carried out within a
framework of circumstances, and these circumstances have to be
known before any examination of the evidence is made in order
that relevant propositions may be proposed. This process provides
a basis for consistency of approach by all scientists who are thereby
encouraged to consider carefully factors such as circumstantial in-
formation and data that are to be used for the evaluation of evidence
and to declare them in the final report.

The scientist should proceed by considering the estimation of the
probability of whatever evidence will be found given each propo-
sition. Consider, for example, a case where a window is smashed
(this example is presented in (2), and assume that the prosecution
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and defence propose the following propositions at the activity level:
“The suspect is the man who smashed the window,” and “The sus-
pect did not smash the window.” The examination of the suspect’s
pullover will reveal a number Q of glass fragments, where Q can
be, for example and for sake of simplicity, one of the following
states: none, few and many. So:

1. The first question asked for assessment of the numerator of
the likelihood ratio is “what is the probability of finding a
number Q of ‘matching’ glass fragments if the suspect is the
man who smashed the window?”

2. The second question asked for assessment of the denominator
of the likelihood ratio is “what is the probability of finding a
number Q of ‘matching’ glass fragments if the suspect is not
the man who smashed the window?”

The scientist is asked initially to assess six different probabil-
ities (three states for the variable Q and two propositions) using
data coming from surveys, relevant publications on the matter or
subjective assessments (6).

Note that these probabilities may not be easy to derive because
of a possible lack of information available to the scientist. For
example, it will be very difficult to assess transfer probabilities
if the scientist has no answer to questions that concern matters
such as the modus operandi. (How was the window smashed? If it
was smashed by a person, then was that person standing close to
it?) Information about the way a window is smashed is important
because it provides information on the amount of glass potentially
projected. Information of the distance between the window and the
person who smashed it offers relevant information on the amount of
glass fragments the scientist will expect to recover. It is also difficult
to assess the probability of persistence of any transferred glass
fragment. All of these aspects are outside the scope of this paper.

For the sake of illustration, Cook et al. (2) proposed probability
distributions for finding a number, Q, of matching glass under the
two competing propositions, Hp and Hd . Therefore, they were able
to calculate likelihood ratios for the three states of Q as a measure
of the value of the evidence Q. Table 1 summarizes their estimates.

These may lead to conclusions that:

“[. . .] on the basis of this assessment, if the suspect is in-
deed the person who smashed the window, there is a 65%
chance that the result of the examination will provide mod-
erate support for that proposition, and a 30% chance that it
will provide weak support. If, on the other hand, the suspect
did not smash the window then there is a 95% chance of
moderate evidence to support [this alternative proposition]
although there is a 5% chance of evidence which will tend
falsely to incriminate him.” [(2) at 155]

From these results, it is suggested that the scientist is in a position
to help the customer make a decision. This stage is a fundamental
one in the process of making decisions, but it does not offer clear
criteria for the decision as to whether or not to perform a test (i.e.,
analytical test in the laboratory).

TABLE 1—Probabilities of Q and likelihood ratio.

Q Pr(Q|Hp) Pr (Q|Hd ) V

None 0.05 0.95 0.05
Few 0.30 0.04 7.5
Many 0.65 0.01 65

Scientists should make decisions and they do so generally under
uncertainty. A logical framework should be employed to reach this
task.

Decision-making

The process of making a decision consists in the choice, given
personal objectives, from two or more (including infinite) possible
outcomes of the one that is considered as the most suitable when
the consequences of the choice is uncertain.

One of the well-known rules for decision making under uncer-
tainty is the Arnauld rule: we are uncertain about what will happen,
or what is true, but we are also uncertain about what to do. Deci-
sions need more than probability, they are based on the values of the
possible outcomes of our actions. To be a rational decision maker,
it is required to choose the decision offering the highest probability
of obtaining the appropriate consequence. This rule is known as the
rule of the maximization of the expected utility (7). De Finetti argues
that this approach is the only one that guarantees that the choice
(between possible actions) is coherent: either we choose using this
rule or our choices are clearly irrational (8). A particular aspect of
this rule has been presented by Wald (9) and it relates to the concept
called the admissibility of a decision. A decision is admissible if
there exist no better decision, that is if it is not dominated by any
other decision. (A decision d dominates d ′ if the consequences of
making d are never worst than those of making d ′, and are better
in at least one case). Note that a decision is admissible if and only
if it is coherent with the expected utility scheme.

Thus, decision theory (a theory for making decisions) provides
a unified framework for integrating all aspects of a decision prob-
lem. More formally decision theory can be defined using Lindley’s
words:

“Decision theory is a mathematical theory of how to make
decisions in face of uncertainty about the true value of pa-
rameters. [. . .] The first element in decision theory is a set of
parameters θ which describes in some way the material of
interest and about which the decisions have to be made. The
second element is a set of decisions d which contains all the
possible decisions that might be taken. Notice that the set of
decisions is supposed to contain all the decisions that could
be taken and not merely some of them: or to put it differently,
we have, in theory, to choose amongst a number of decisions.
Thus it would not be a properly defined decision problem in
which the only decision was whether to go to the cinema,
because if the decision were not made (that is, one did not
go to the cinema) one would have to decide whether to stay
at home and read, or go to the public-house, or indulge in
other activities. All the possible decisions, or actions, must
be included in the set.” [(10) at 62–63]

A first task in any decision problem is to draw up an exhaustive
list of actions that are available: d1, d2, . . . , dm ∈ �. The space of
decisions � is provided with a partial pre-ordering, denoted by �;
this means that it is all the time possible to detect which decision
is suitable or whether they are equivalent (11). It is convenient to
make the requirement of exclusivity: only one of the decisions can
be selected.

Secondly, a list of n exclusive and exhaustive uncertain events
(also called states of nature) is needed: θ1, θ2, . . . , θn ∈�, where
� denotes the entirety of nature.

Decision theory can apply to conditions of certainty, risk or un-
certainty. Decision under certainty means that each alternative leads
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to one and only one consequence, and a choice among alternatives
is equivalent to a choice among consequences. Decision problems
can be complicated because of uncertainty about what the future
holds. Many important decisions have to be made without knowing
exactly what it will happen in the future, in the sense that each
alternative will have one of several consequences. It is possible to
measure uncertainty on the events using a suitable probability dis-
tribution P over �. Therefore, each alternative is associated with
a probability distribution and a choice among probability distribu-
tions. In decision under risk, the probability of occurrence for each
consequence of any decision is known. When the probability dis-
tributions are unknown, we are faced to decision under uncertainty.
Examples through this paper approach situations under risk.

Utility as a Probability

The two elements, the decision d and the event θ, are related
to one another. The main problem of the two lists is to choose a
member of the first list (decision) without knowing which member
of the second list (state of nature) happens.

The combination of decision di with state of nature θj will result
in a foreseeable consequence. This consequence will be written
as Cij =Cdi

(θj ). Varying di , i = 1, . . . ,m, and θj , j = 1, . . . , n,
a space of consequences is obtained. Consequences are defined in
such a way that it is possible for them to be ranked with the first
in the ranking called “best” and the last “worst.” Notice that this
particular ranking is not inevitable. With this particular ranking, it is
not immediately obvious which decision should be taken. It follows
that the next task is to provide something more than just a ranking. In
order to do this a standard is introduced and a coherent comparison
(i.e., a comparison which does not produce inconsistencies) with
this standard provides a numerical assessment.

Assume C is the happiest consequence and c is the worst of them.
C and c being a reference pair of highly desirable and highly unde-
sirable consequences, respectively. It follows that any consequence
Cij may be compared unfavourably with C and favorably with c.
Associated with any consequence Cij is a unique number u ∈ (0, 1)
such that Cij is just desirable as a probability u of C and 1 − u of
c. The number associated with Cij will denoted u(Cij ) or u(di, θj )
and will be called the utility of Cij .

Utility is a measure of the desirability of consequences of a
course of action that applies to decision-making under risk (un-
certainty with known probabilities). The measure of the utility is
assumed to reflect the preferences of the decision maker. The nu-
merical order of utilities for consequences has to preserve the de-
cision maker’s preference order among the consequences. So, for
example, for decision (action) di and three mutually exclusive states
of nature, θ1, θ2 and θ3, if the decision maker prefers consequence
C13 to C12 and C12 to C11, the utilities assigned must be such that
u(C13) > u(C12) > u(C11). In general it can be said that decision di

dominates weakly decision dk if and only if u(di, θ) ≥ u(dk, θ) for
every θ ∈ �:

di � dk ⇔ u(di, θ) ≥ u(dk, θ), ∀θ ∈�.

The domination is said to be strong if ≥ is replaced with > .
This utility is a probability: u is by definition the probability

to obtain the best consequence. So numbers are associated with
decisions in such a way that the best decision is that with the
highest number. If decision di is taken and if state θj occurs, the
probability of obtaining the consequence C is u(Cij ):

Pr(C|di, θj ) = u(Cij ).

The expected utility of decision di is:

E(U |di) =
n∑

j=1

Pr(C|di, θj ) Pr(θj ) =
n∑

j=1

u(Cij ) Pr(θj ).

The expected utility E(U |di) gives a numerical value to the prob-
ability of obtaining the best consequence C if decision di is taken.
A decision problem is solved by maximizing expected utility (note
that it is possible to formulate decision problem in an alternative
way in terms of loss or regret associated with each pair (θ, d) by
defining a loss function. The loss function L(θ, d) is the difference
between the utility of the outcome of action d for state θ and the
utility of the outcome of the best action for that state. Therefore,
the action minimizing the expected loss is the same as the action
maximizing the expected utility). The numerical order of expected
utilities of actions preserves the decision maker’s preference order
among these actions.

Utility is not just a number describing the attractiveness of a
consequence but is a number measured (from the main point of
view expressed in this text) on a probability scale and obeys the
laws of probability. It is a measure of the value of the decision
di : the greater the expected utility, the greater the desirability of
the decision because it offers a greater probability of obtaining the
better consequence.

Note that the same result would have been obtained had other
standards been used. A property of the utility is that it is unaffected
by a linear change. The process is not influenced by the reference
points C and c: the suitable decision does not change with a varying
origin or scale of utility.

It is assumed that the optimal choice is the option for which the
expected value of the utility function is largest. If this assumption is
accepted, theory can be used to predict the choice that the decision-
maker should make among the set of possible actions. Therefore,
decision theory gives a disciplined way of considering problems
of decision and inference that offers the possibility of a rational
choice in the presence of risk. For example, suppose the unknown
‘states of nature’ are θ1 and θ2 with current probabilities Pr(θ1) and
Pr(θ2), respectively, such that Pr(θ1) + Pr(θ2) = 1. Assume there
are two and only two possible decisions d1 and d2: choose d1 if we
believe θ1 to be true and d2 if we believe θ2 to be true.

Let u(d1, θ1) be the utility of taking decision d1 when θ1 is true
and define the other utilities similarly. The theory of maximization
of the expected utility states that we should take decision d1 if
E(U |d1) > E(U |d2). This will occur if

u(d1, θ1) Pr(θ1) + u(d1, θ2) Pr(θ2)

> u(d2, θ1) Pr (θ1) + u(d2, θ2) Pr (θ2)

which can be rearranged to give

Pr(θ1)

Pr(θ2)
>

u(d2, θ2) − u(d1, θ2)

u(d1, θ1) − u(d2, θ1)
(1)

This inequality has an intuitive explanation. The numerator on
the right-hand side is u(d2, θ2) − u(d1, θ2), the additional utility
involved in taking the correct decision when θ2 turns out to be the
correct state. It could also be considered as the potential regret, in
that it is the potential loss in utility when we erroneously decide
on θ1 instead of θ2. The denominator similarly acts as the potential
regret when θ1 is true. Hence equation (1) says we should only take
decision d1 if the odds in favour of θ1 are sufficient to outweigh
any extra potential regret associated with incorrectly assuming θ2

[(12) at 86].
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As mentioned by Lindley (13):

“The value inserted for the utilities and probabilities are
in no sense correct and any other values wrong. They repre-
sent the decision-maker’s individual preferences and may be
modified by him. The only inviolate feature of them is their
coherence.

[. . .] The utility values must cohere with related quantities
in other decision problems. A decision problem in isolation
can have any values for utilities and probabilities. It is the
coherence with other problems that constrains their values.”
[(13) at 157].

The consequence Cij will be valued differently by different peo-
ple. For example, if Cij is a pair of first-row seats at a concert, a
person who loves music will greatly value Cij , whereas someone
who doesn’t care for music will not be very interested in Cij [(14)
at 25]. Your utility function can vary from situation to situation. For
example, it may depend upon your current amount of savings.

The utility function is intended to describe how much a unit of
something is worth. This value can be changed and so the decision-
maker can explore consequences. Through sensitivity analysis, the
decision-maker explores how different things would have to be for
him to change his mind about the decision. This indicates how
robust the decision is and points out areas where uncertainty is par-
ticularly problematic. Quantitative analysis must be viewed as an
exploration of possibilities, not of hard predictions. However, the
process of quantification may help to clarify the thinking and it pro-
vides a way of assessing which part of the model has a particularly
large impact on the outcome and on determining how robust the
preferred course of action is to other possibilities (15). This point
will be illustrated through an example later.

In conclusion, it has been shown that there exists a unique way
in which to make sensible decisions. In order to use this way, it is
necessary that:

1. Uncertainties of the outcomes of events are quantified by prob-
abilities;

2. Consequences of possible actions are quantified using utilities.

The decision-maker then takes the decision that maximizes the
expected utility. These points are summarised by De Finetti (8) in
the following terms:

“Probability is the idea underlying our decisions under un-
certainty, and, inversely, the decision theory is the operational
basis to test our evaluations of probability and to refine the
logico-psychological sense that guide us [. . .].” [(8) at 248]

Decision theory provides a useful framework to explore alterna-
tives. It forces the decision maker (i.e., the scientist) to recognize
that deciding not to take action is just as much a decision as decid-
ing which action to take. It forces the decision maker to recognize
that he may err either by taking an unnecessary action or by fail-
ing to take a necessary action. It helps to formalize and categorize
the thinking to make sure that all relevant possibilities have been
considered.

Utility as a Non-Negative Number

Decision theory is often presented and explained through a very
simple example. Suppose, for example, that on a given occasion
you face the decision of whether or not to carry an umbrella, and
consider, for sake of simplicity, only two possible states, future
rain and future shine (3,16). Another traditional example is the

FIG. 1—Expected utility as function of q where u(d1, θ1) = 0,
u(d1, θ2) = 10, u(d2, θ1) = 4, u(d2, θ2) = 3.

following. You need to decide whether to go on a picnic or stay
home; call these decisions d1 and d2, respectively. Your utility
depends on the weather. Imagine two possibilities: it rains or it
shines. The two uncertain events are called θ1 and θ2, respectively.

The utilities u(di, θj ) are defined following a different scale from
the previous section (note that there is a body of literature where new
measures of utility have emerged, notably in the field of evidence-
based medicine—see for example (17) —, but there is little thought
on the assessment of utilities outside this field). In this example
they are not probabilities. Here the best consequence is set equal to
10, the worst consequence is set equal to 0:

1. u(d1, θ1), go on the picnic and get wet: 0;
2. u(d1, θ2), go on the picnic and have fun: 10;
3. u(d2, θ1), stay home so you stay dry indoors: 4;
4. u(d2, θ2), stay home and it is nice: 3.

Let q be the probability of rain. The expected utilities for the two
decisions are then

E(U |d1) = q · u(d1, θ1) + (1 − q) · u(d1, θ2) (2)

E(U |d2) = q · u(d2, θ1) + (1 − q) · u(d2, θ2) (3)

For q = 0.1, E(U |d1) = 9.0; E(U |d2) = 3.1. Expected utility as a
function of q, the probability of rain, can be expressed graphically
(see Figure 1). The optimal decision is to go on the picnic if q <

0.634 ≈ 0.64. This threshold is defined by the intersection of the
two utility functions.

Imagine you now hear a weather forecast. The forecast is for rain
(call this event F = r) or for shine (call this event F = s). Knowing
the sensitivity and specificity of the weather forecast you estimate
the new expected utility as a function of the forecast, F = r or
F = s, where sensitivity is the probability it rains when it is forecast
to rain and specificity is the probability there is sunshine when
sunshine is forecast. It can be shown that collecting information
is useful if it might change your decision. Here, the role played
by inductive reasoning (i.e., Bayesian) within the area of decision
theory, illustrates the rational procedure to be followed in order to
choose a decision in the best possible way. A rational actor will
make those decisions that maximize (subjective) expected utility
(or, equivalently, that minimize expected loss) [(16) at p. 4].

An example is presented in the Appendix using graphical models.
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Case Study: The Kinship Determination

In addition to the parent-child determination in traditional parent-
age testing, other kinds of relationships of individuals also need to
be tested in practice (18). Consider a situation involving the de-
termination of kinship for possible inheritance consequences. Two
individuals, say A and B, would like to know if they are full sibs or
unrelated.

The two questions of interest (before performing the DNA profile
test) in this scenario are:

1. Could the scientist obtain a value supporting the hypothesis
Hp or Hd? Note that Hp and Hd are respectively defined as
‘The pair of individuals A and B are full sibs’ and ‘The pair
of individuals A and B are unrelated’.

2. How can the laboratory take a rational decision on the neces-
sity to perform a DNA profile test?

Pre-assessment results (as presented by Cook et al. (2) in the
glass scenario) allow the scientist to answer question 1. Decision
theory deals with question 2.

Pre-assessment and Likelihood Ratios Distributions

Fundamental to this kinship scenario is the estimation of useful
distributions for evidence under the two competing propositions.
Allele frequencies (at different loci) from a selected population
database are chosen. It is assumed that these frequencies can be used
to create other databases as suggested by Triggs and Buckleton (19)
through simulations techniques. One database of a large number of
pairs of siblings and one of a large number of pairs of unrelated
individuals are generated.

For a given couple of individuals in the first database (siblings),
a likelihood ratio, V, is estimated

V = Pr(GA,GB |Hp)

Pr(GA,GB |Hd )

where GA and GB represent the genotypes of individuals A and B,
respectively. The same procedure is performed for couples of indi-
viduals coming from the second database (unrelated individuals).
A data set of 50,000 pairs of individuals (per database) is gen-
erated. Simulations have shown this number of pairs is sufficient
to estimate the distributions of the likelihood ratios. A coancestry
coefficient, FST , equal to 0.01 was used in simulations to take into
account sub-populations effect in assessing random match proba-
bilities (20).

So, two distributions of likelihood ratios are obtained. The first
assesses full sibship for related individuals (brothers), the second
assesses full sibship for unrelated individuals. Distributions are
presented in Figure 2 (note that the natural logarithm of V is used
to reduce the skewness).

Figure 2 shows that log(V ) values are greater for full siblings
than for unrelated individuals. There is an overlap between the
two distributions. The overlap increases as the strengths of the
relationship in the populations defined under Hp and Hd increase.
Scenarios involving half-siblings versus unrelated and full siblings
versus half-siblings are presented in Figs. 3 and 4.

Figures 2, 3 and 4 provide the answer to the question “could we
obtain a value supporting the hypothesis Hp or Hd in this scenario?”
Values of V show that an informative result can be obtained as is
explained in the next Section.

FIG. 2—Distribution of the likelihood ratio, V, for full siblings versus
unrelated.

FIG. 3—Distribution of the likelihood ratio, V, for half siblings versus
unrelated.

Posterior Probabilities

In the context of paternity and kinship, it is acceptable to make
a digression from consideration solely of the likelihood ratio V and
to consider the probability that individuals A and B are full sibs;
i.e., the probability that Hp is true. This probability is known as the
probability of sibship.

Consider a piece of evidence, E1, where E1 = {GA,GB} at a first
locus. The odds in favour of Hp, given E1 may be written, using
the odds form of Bayes’ Theorem, as

Pr(Hp|E1)

Pr(Hd |E1)
= Pr(E1|Hp)

Pr(E1|Hd )
× Pr(Hp)

Pr(Hd )
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FIG. 4—Distribution of the likelihood ratio, V, for full siblings versus
half siblings.

and Pr(Hd |E1) = 1 − Pr(Hp|E1) so that, after rearrangement,

Pr(Hp|E1) =
{

1 + Pr(E1|Hd )

Pr(E1|Hp)
× Pr(Hd )

Pr(Hp)

}−1

(4)

Suppose (rather unrealistically) that the prior on the two
propositions (each possibility) are equally likely. Then Pr(Hp) =
Pr(Hd ) = 0.5 and Pr(Hp|E1) = 1/(1 +V ).

Now include E2, E3, . . . , En with E1, thus describing results
for n loci. The posterior odds in favour of Hp, given E1, now
replace the prior odds for the new evaluation. In general, for n
independent DNA markers, giving evidence E1, E2, . . . , En, with
Pr(Hp) = Pr(Hd ),

Pr(Hp|E1, . . . , En) =
{

1 +
n∏

i=1

Pr(Ei |Hd )

Pr(Ei |Hp)

}−1

∏n
i=1 Pr(Ei |Hd )/Pr(Ei |Hp)is the product of the reciprocals of

the n likelihood ratios Pr(Ei |Hp)/Pr(Ei |Hd ). This expression is
also called the plausibility of kinship. Notice that it depends on the
assumption Pr(Hp) = Pr(Hd ) = 0.5. The assumption that Pr(Hp)
equals Pr(Hd ) may easily be dispensed with to give the following
result

Pr(Hp|E1, . . . , En) =
{

1 + Pr(Hd )

Pr(Hp)

n∏
i=1

Pr(Ei |Hd )

Pr(Ei |Hp)

}−1

(5)

The effect on the posterior probability of altering the prior prob-
ability can be determined from equation (5). The plausibility of
kinship has also been transformed into a likelihood of kinship
(i.e., likelihood of paternity) (21–22) to provide a verbal scale,
given here on Table 2, columns 1 and 2.

Hummel’s scale can be used to characterize states of nature (θj )
in the decision approach as presented in the next Section, because
legal decision in kinship cases is closely related to this scale by
jurisprudence.

TABLE 2— Hummel’s scale and states of nature.

Plausibility of Paternity Likelihood of Kinship States of Nature

Greater than 0.9979 Practically proved θ1
0.9910–0.9979 Extremely likely θ2
0.9500–0.9909 Very likely θ3
0.9000–0.9499 Likely θ4
0.8000–0.8999 Undecided θ5
Less than 0.8000 Not useful θ6

TABLE 3—Decision table.

States of Nature

Decisions θ1 θ2 θ3 θ4 θ5 θ6

d1 u(C11) u(C12) u(C13) u(C14) u(C15) u(C16)
d2 u(C2•)

Pr(θ) Pr(θ1) Pr(θ2) Pr(θ3) Pr(θ4) Pr(θ5) Pr(θ6)

TABLE 4—Utility of consequences of decision 1 and 2.

States of Nature

Decisions θ1 θ2 θ3 θ4 θ5 θ6

d1 1 0.5 0.1 0.1 0.1 0
d2 0.7 0.7 0.7 0.7 0.7 0.7

Decisions and uncertain events

At first, a decision, its alternative and the uncertain events (states
of nature) are defined. Decisions d1 and d2 are “Perform the DNA
profile test” and “Not perform the DNA profile test,” respectively.
Uncertain events are specified using the states presented in the
Hummel’s scale. States of nature are specified from a particular
point of view, the full sibblings perspective, where an individual is
interested in proving the sibling relationship. On the contrary if an
individual is interested in proving unrelatedness, then the order of
Table 2 is inverted: θ1 represents the state Not useful, and so on.

The decision to perform or not to perform the DNA test produces
the following consequences:

• C11 : perform the DNA test and obtain the answer Practically
proved (best consequence);

• C12 : perform the DNA test and obtain the answer Extremely
likely;

• C13 : perform the DNA test and obtain the answer Very likely;
• C14 : perform the DNA test and obtain the answer Likely;
• C15 : perform the DNA test and obtain the answer Undecided;
• C16 : perform the DNA test and obtain the answer Not useful

(worst consequence);
• C2• : do not perform the DNA test. Logically, if no test is

performed, there can be no answer.

All these aspects of the decision problem are summarized in Table 3.
The expected utilities of d1 and d2 are, respectively:

E(U |d1) =
6∑

i=1

u(C1i) Pr(θi) (6)

E(U |d2) = u(C2•) (7)

Utilities are obtained using the standard presented in the previ-
ous Section “Utility as a probability;” they are shown in Table 4.
Utilities equal to 1 and 0 are assigned to states “Practically proven”
and “Not useful,” respectively, considered to be the best and worst
consequences.
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TABLE 5—Probabilities of the states of nature for unrelated pairs.

Prior Probability of Sibship p

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

θ1 0.0048 0.0079 0.0109 0.0138 0.017 0.0213 0.0268 0.034 0.0501
θ2 0.0072 0.0099 0.0129 0.0157 0.0188 0.0224 0.0269 0.0345 0.0459
θ3 0.0170 0.0248 0.0310 0.0385 0.0450 0.0518 0.0589 0.0699 0.0862
θ4 0.0124 0.0183 0.0227 0.0253 0.0282 0.0317 0.0376 0.0408 0.0479
θ5 0.0194 0.0258 0.0302 0.0338 0.0385 0.0427 0.0451 0.0510 0.0575
θ6 0.9392 0.9133 0.8923 0.8729 0.8525 0.8301 0.8047 0.7698 0.7124

TABLE 6—Probabilities of the states of nature for full siblings.

Prior Probability of Sibship p

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

θ1 0.9261 0.9469 0.9575 0.9647 0.9702 0.9752 0.9804 0.9852 0.9905
θ2 0.0338 0.0245 0.0204 0.0175 0.0155 0.0133 0.0105 0.0079 0.0052
θ3 0.0219 0.0169 0.0130 0.0108 0.0088 0.0068 0.0056 0.0041 0.0028
θ4 0.0060 0.0039 0.0033 0.0023 0.0020 0.0016 0.0011 0.0012 0.0006
θ5 0.0040 0.0030 0.0019 0.0016 0.0010 0.0012 0.0010 0.0007 0.0004
θ6 0.0082 0.0048 0.0039 0.0031 0.0025 0.0019 0.0014 0.0009 0.0005

TABLE 7—Expected utility of d1 and d2, in the case of testing full siblings versus unrelated.

Prior Probability of Sibship
Expected Utility

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E(U |d1) 0.9462 0.9615 0.9695 0.9749 0.9791 0.9828 0.9864 0.9898 0.9935
E(U |d2) 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

Utilities u assigned to intermediate consequences C1j , j =
2, . . . , 5, are specified answering the following question:

“does the decision-maker prefer the intermediate conse-
quence or does he prefer the best consequence (‘Practically
proven’) with probability set equals to u?”

For example, consider C13. Does the decision-maker prefer to
perform the test and learn that the kinship is very likely (plausibility
between 0.9500 and 0.9909) or to accept that if he performs the test
the result that kinship is practically proved (plausibility greater
than 0.9979) will be obtained with probability 0.1 (the value of u

assigned to θ3 for d1 in Table 4)?
The value u is the threshold of indifference.
The utility of the consequence under d2 is fixed equals to 0.7:

this means that it is assumed the decision-maker is indifferent be-
tween not performing the test and performing the test and obtain-
ing the best consequence (“Practically proven”) with probability
0.7. The utility of not performing the test is a direct consequence
of the cost of performing it. This cost may be purely monetary.
More generally it may combine monetary costs with other non
financial burdens, such as inconvenience, intrusiveness, etc. Dif-
ferent decision-makers may state very different values for u(C1j ),
j = 1, . . . , 6 and u(C2•), depending on the kind of interest there is
in determining the level of parentage, and on their adversity on risk.

Consider the propositions being tested are: full siblings and un-
related. Starting from the empirical cumulative distribution of the
posterior probability of sibship, the probabilities of the states of
nature θ1, . . . , θ6 have been calculated for different values of the
prior probability of sibship p, ranging from 0.1 to 0.9. Table 5 gives
the probabilities of the states of nature calculated for pairs of unre-
lated people, while in Table 6 there are the probabilities computed
for pairs of full siblings.

FIG. 5—Expected utilities for d1, d2. The case of half-siblings versus
unrelated pairs, for varying prior probabilty p of sibship.

The expected utilities of d1 and d2 have been computed as in
equations (6) and (7) for different values of p (see Table 7).

So, if a couple of individuals are really full siblings, the DNA
test will generally confirm it and d1 should always be used.

The situation becomes more complicated if the DNA test is re-
quested to find out a different level of parentage, such as half-sibship
versus unrelatedness or full-sibship versus half sibship. Figures 3
and 4 show that there is an increasing overlap among the distribu-
tions of the likelihood ratio, so there is a larger uncertainty.

Figure 5 shows the value of the prior probability of sibship p start-
ing from which the expected utility of performing the test overlaps
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FIG. 6—Probability densities on the prior probability of sibship p.

the expected utility of not performing it, in the case half-siblings
versus unrelated. So, if the decision-maker believes the Court will
adopt a prior probability of sibship greater than 0.2, the test should
be done. But what is the probability that the prior probability p will
be greater than 0.2? There may be great uncertainty about the prior
that will be adopted. Three different probability distributions are
proposed here for illustrative purposes. They reflect different beliefs
by the scientist on the value of the prior of probability of paternity
p that will be adopted by the Court. The first one reflects a high
belief on low values of the prior p, p ∼ Be(α = 0.5, β = 2), the
second one a situation of great uncertainty, p ∼ Be(α = 1, β = 1),
while the last one a high belief on high values of the prior p,
p ∼ Be(α = 2, β = 0.5), see Figure 6. Here Be(α, β) denotes the
Beta distribution such that the probability density function f (p) for
p has the form

f (p|α, β) = pα−1(1 − p)β−1

B(α, β)
, 0 < p < 1, (8)

denoted Be(α, β), where

B(α, β) = �(α) �(β)

�(α + β)
,

and � is the gamma function such that

�(x + 1) = x! for integer x > 0,

�(1/2) = √
π. (9)

See Aitken and Taroni (23) for further details.
In Table 8, the cumulative distribution functions, F1(·), F2(·),

F3(·), corresponding to the three situations, computed for different
values of the prior p.

Suppose now that the distribution of the posterior probability of
sibship suggests, given the preferences of the decision maker, that
the analysis is convenient only if the Court will adopt a prior greater
than p = 0.2. Table 8 gives, under three general situations, the prob-
ability that a value less than p = 0.2 will be adopted. In particular,
if there is a strong belief that the Court will adopt a high prior
probability of sibship (situation 3), it can be seen that F3(0.2) =
Pr(p ≤ 0.2) = 0.016. So, in this case it will be convenient to per-
form the test. Vice-versa, in situation 1, F1(0.2) = Pr(p ≤ 0.2) =
0.63, there will be much more uncertainty.

It has already been pointed out that the final decision will depend
on the preferences of the decision-maker, since utilities depend on
them. Note that conflicts in decision-making arise because different
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TABLE 8—Cumulative probabilities of paternity priors for (a) Be(α =0.5, β = 2), (b) Be(α = 1, β = 1), (c) Be(α = 2, β = 0.5).

Prior Probability of Sibship

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(a) F1(p) 0.46 0.63 0.74 0.82 0.88 0.92 0.96 0.98 0.99
(b) F2(p) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
(c) F3(p) 0.003 0.016 0.037 0.07 0.11 0.17 0.26 0.37 0.54

FIG. 7—Expected utilities of d1, d2. Case half siblings versus unrelated
(a), and full siblings versus half siblings, (b).

decision makers place different values on different aspects of the
outcome. This is not a problem because the framework uses sub-
jective estimates, so different conclusions could be reached. The
popular argument goes that if a probability represents a degree of
belief, then it must be subjective in the sense of arbitrary, because
personal beliefs could be different. This is wrong. Probability does
indeed represent how much it is believed that something is true.
This belief should be based on all the relevant information avail-
able; the information at someone’s disposal may not be the same
as that accessible to anyone else. This is not the same as arbitrary;
it simply means that probabilities are always conditional, and this
conditioning must be stated explicitly.

Sensitivity analysis can be performed, to analyze how sensitive
the model is to changes in parameters or inputs where the output
is the choice of action. The changes to be tested may be variations
in the evidence provided or variations in the parameters, especially
probability tables or utilities. A simple example is presented in
Fig. 7 where utilities associated to decision d2 are modified. Curve
(a) represents the expected utility computed for different values of
the paternity prior p when testing half-sibship versus unrelatedness,
while curve (b) represents the expected utility when testing full-
sibship versus half-sibship (the utilities of consequences of d1 and
d2 are stated as in Table 4). So, if for instance u(C2•) is set equals
to 0.7, d1 would be convenient in case (a) only if the prior of
sibship was at least equals to 0.2, while in case (b) d1 would never
be convenient. Otherwise, if u(C2•) is set equal to 0.3, decision 1
would always be convenient when the hypothesis being tested is the
one contemplated by case (a), while in case (b) decision 1 would
be convenient only for very high values of the prior p, such as p

greater than 0.9.

FIG. 8—Decision tree in case of testing full siblings versus unrelated as
in Section ‘Decision and uncertain events’.

Graphical Models

An inference problem can be broken down into smaller problems
that can be solved separately and then combined to provide a solu-
tion to the larger problem (13). Scientists can solve the problems
occurring at the level of scientific evidence and then use the rules
of probability calculus to make them cohere with the entire eviden-
tial body. This is the concept behind graphical models. They allow
the scientist to represent and reason about an uncertain domain of
interest.

Graphical models provide a language of building blocks for con-
structing probability and decision models from modular compo-
nents. They also provide a full picture of the problem under investi-
gation. Through their use, it is hoped to make all of the implications
of reasoning clear to lay people, without them having to understand
any of the underlying mathematics or how to perform any calcula-
tion.

Probability trees are presented first. Then, influence diagrams
are introduced. These are directed graphs representing the options,
probabilities of the consequences, and the utilities of the conse-
quences in a decision problem.

Probability Trees

A decision tree is a graphical model characterized by two kinds
of nodes:

• the chance (or uncertainty) nodes representing random vari-
ables (circle in Fig. 8),

• the decision nodes representing decisions to be made (square
in Fig. 8).

The branches emanating from a square correspond to the choices
available to the decision maker, and the branches from a circle
represent the possible outcomes of a chance event. The third de-
cision element, the consequence, is specified at the ends of the
branches. The utility of the outcome is the value of the outcome to
the decision-maker.
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Values associated with each possible outcome and probabilities
associated with each branch of the tree are specified. Thus, it is pos-
sible to calculate the expected value associated with each possible
decision. The expected value of a decision is the weighted average
of all outcomes associated with the decision, where the weights are
the probabilities associated with each step in the decision tree.

The problem described in Section “Decision and uncertain
events” in the case of testing full siblings versus unrelated (in the
specific case of p = 0.5) can be represented by a decision tree. The
tree is shown in Fig. 8.

A decision tree represents all of the possible paths that the
decision maker might follow through time, including all possible
decision alternatives and outcomes of chance events. It is sometimes
useful to think of the nodes as occurring in a time sequence.
Beginning on the left side of the tree, the first thing to happen is
typically a decision, followed by other decisions or chance events
in chronological order. So, placing a chance event before a decision
means that the decision is made conditional on the specific chance
outcome having occurred (24).

Bayesian Networks and Decision Networks

Nodes and arcs are the main ingredients of a Bayesian network
(BN). Nodes represent a set of random variables. Each node is
characterized by states describing the values the corresponding
variables can take. A set of directed arcs connects pairs of nodes rep-
resenting the direct dependencies between variables. The strength
of dependencies between variables is quantified by (conditional)
probability distributions associated with each node.

BNs provide a valuable aid for representing relationships among
characteristics in situations of uncertainty. They assist the user not
only in describing a complex problem and communicating informa-
tion about its structure but also in calculating the effect of knowing
the truth of one proposition or one piece of evidence on the plau-
sibility of others. BNs represent uncertainty and may be used for
probabilistic inference.

Forensic science and judicial literature has already underlined
that complex frameworks of circumstances, notably situations in-
volving many variables, require the assistance of a logical approach
(25–26). Methods of formal reasoning have been proposed to assist
the forensic scientist to understand all of the dependencies which
may exist among different aspects of the evidence (27–33). The use
of graphical models to represent legal issues is not new (34). Proba-
bilistic networks have been reintroduced recently with the analysis
of complex and famous cases such as the Sacco and Vanzetti case
(35) and the O. J. Simpson trial (36).

An extension of BNs allows the scientist to obtain an aid to
support decision making. Adding an explicit representation of the

FIG. 9—Kinship problem represented by a decision network.

decisions under consideration and the value (utility) of the resulting
outcomes (the states that may result from a decision, also called
action) gives (Bayesian) decision networks (BDNs). BDNs com-
bine probabilistic reasoning with utilities to make decisions that
maximize the expected utility.

A BDN consists of three types of nodes:

• the chance nodes representing random variables (as in BNs),
• the decision nodes which have a rectangular shape and rep-

resent the decision being made at a particular time and the
utility nodes. The value of a decision node are the actions
that the decision maker must choose between,

• the utility nodes which have a diamond shape and represent
the decision maker’s utility function. They are characterized
by utility tables specified for every variable describing the
outcome state that directly affect the utility.

Figure 9 represents the BDN for the genetical problem presented
in Section ‘Decision and uncertain events’ in the case of testing full
siblings versus unrelated (in the specific case of p = 0.1).

Figure 9 illustrates that the decision (d1 or d2) and the chance
node influence the utility node as expressed by the arcs from those
nodes to the utility node. The utility node describes the value of
the consequence Cij and the number associated with it is denoted
u(di, θj ). Values are specified in Section “Decision and uncertain
events.”

The probability table associated to the chance node presents prob-
abilities for θ1, . . . , θ6 obtaining through simulation techniques as
presented in Section “Decision and uncertain events.”

Note that there is no parent node to the decision node (no arc
pointing to this node). In fact, no state of nature is known at the time
the decision is made so no link is requested. A different situation is
presented in the Appendix.

The network allows the decision maker to check expected utilities
for the two decisions to be able to choose the more suitable decision.
Graphical models represent, in an economic, simple and intuitive
way, the probabilistic relations existing among the variables in a
decision situation.

Decision trees and BDNs are complementary in the sense that the
latter are particularly valuable for the structuring phase of problem
solving and for representing large problem. Decision trees display
the details of a problem; they display considerably more infor-
mation than do decision networks where information is compacted
into nodes. Decision networks are generally preferred because their
understanding in a decision analysis is superior, regardless of math-
ematical training. Graphical models allow the scientist (the decision
maker) to approach a problem, to structure it, to solve it without
taking account of mathematical background.
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FIG. 10—Picnic problem represented by a decision network.

Conclusion

All forensic scientists have to cope with uncertainty. They have
to take into account: (a) theoretical uncertainty, because no com-
plete theory is known about the problem domain (e.g. police in-
vestigation, forensic examination), (b) cost-effectiveness, because
the space of relevant factors can be very large and would require
too many resources to investigate fully, (c) practical uncertainty,
because there is uncertainty about a particular individual in the
domain of interest, and (d) decision-making under uncertainty, be-
cause it is necessary to make rational decisions even when there
is not enough information to prove that a proposed course of ac-
tion will work. This point has been emphasized through the use of
decision theory.

Decision theory is a body of knowledge and related analytical
techniques designed to help a decision maker choose amongst a
set of alternatives in light of their possible consequences. It is a
mathematical theory of how to make decisions in the face of risk
and uncertainty.

Graphical models have been introduced. They allow the forensic
scientist to: (a) think about the problem involving uncertain infor-
mation, (b) learn how to apply these methods to draw inferences
about the world of interest, and (c) learn how to act rationally under
risk.

Decision theory and graphical models will offer forensic sci-
entists new tools to approach and interpret complex patterns of
evidence. They will guide them in their decision process, focus
their resource into the appropriate data gathering process and pro-
vide them with a intuitive tool to expose their thinking. Despite
the cognitive difficulties (the representation and communication of
values and utilities), decision-oriented quantification is an almost
indispensable component of good forensic decision-making. These
models will be essential in the day-to-day work of forensic experts
and will ease communication between scientists and with other
parties in the criminal justice system.
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Appendix

Recall the “Picnic” scenario. You need to decide whether to go on
a picnic or stay home; call these decisions d1 and d2, respectively.
Your utility depends on the weather. Imagine two possibilities: it
rains or it shines. The two uncertain events are called θ1 and θ2,

FIG. 11—Picnic problem represented by a decision network with node
‘Forecast’ instantiated.

respectively. The utilities u(di, θj ) have been defined in Section
“Utility as a non-negative number.”

The utility node is influenced by the chance node ‘Weather’ and
the decision node. This is done by two arcs from those nodes to the
utility node. The probability table linked to the new node “Forecast”
expresses the forecast performance depending on node “Weather.”
Sensitivity and specificity of the forecast are presented in the first
and fourth case of the table.

What is the optimal decision if the probability, p, of rain is
0.1? The expected utility for the two decisions are 9.0 and 3.1,
respectively. This is automatically shown in the decision network
(see Fig. 10).

The decision node has the chance node “Forecast” as parent. In
fact, the value of the parent is known at the time the decision is made;
hence the arc represents the sequence from parent node to child
node. Now, imagine you learn new information about the weather.
The forecast is for rain. This new information does not change
your rational decision. In fact, the expected utility on d1 is reduced
from 9 to 6.66 as presented in Fig. 11 when node “Forecast” is
instantiated. In the same time, the probability of rain, p, is updated,
Pr(Weather = rain|F = r): from a prior of 0.10 to a posterior of
0.33.
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